\qquad
\qquad Date \qquad

Mole to Mole Conversions (QUESTIONS 1-4)

1. EXAMPLE: USE THIS TO HELP WITH THE PROBLEMS

$$
{ }^{1} \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

a. If 2.48 moles of magnesium reacts to completion, how many moles of hydrochloric acid (HCl) were consumed in the reaction?
HAVE: 2.48 moles magnesium WANT: moles of $\mathbf{H C l}$

2. Using the following chemical reaction, to determine the mole to mole conversion.

$$
1 \mathrm{Mg}+2 \mathrm{HCl} \rightarrow 1 \mathrm{MgCl}_{2}+1 \mathrm{H}_{2}
$$

a. If 0.56 moles of magnesium reacts to completion, how many moles of magnesium chloride are produced in the reaction?
3. Using the following chemical reaction, to determine the mole to mole conversion.

$$
1 \mathrm{Mg}+2 \mathrm{HCl} \rightarrow 1 \mathrm{MgCl}_{2}+1 \mathrm{H}_{2}
$$

a. If 6.52 moles of hydrogen gas are produced $\left(\mathrm{H}_{2}\right)$, how many moles of hydrochloric acid (HCl) were consumed in the reaction?
4. Balance the EQUATION: \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{N}_{2} \rightarrow$ \qquad NH_{3}

Use the equation above to determine the following mole to mole calculations
a If 3.24 moles of ammonia gas are produced, how many moles of hydrogen gas were consumed in the reaction?

Mole to Mass (QUESTIONS 5- 6)

5. EXAMPLE: USE THIS TO HELP WITH THE PROBLEMS

$$
2 \mathrm{Mg}+3 \mathrm{CuCl}_{2} \rightarrow 2 \mathrm{MgCl}_{2}+3 \mathrm{Cu}
$$

a. If 1.86 moles of magnesium reacts to completion, how many grams of copper (II) chloride were consumed in the reaction?
HAVE: $\mathbf{1 . 8 6}$ moles Mg

1.86 X 3×134.45
\qquad $=$

```
            375 g CuCl2
```

6. Using the following chemical reaction, to determine the mole to mass conversion.

$$
2 \mathrm{Mg}+3 \mathrm{CuCl}_{2} \rightarrow 2 \mathrm{MgCl}_{2}+3 \mathrm{Cu}
$$

a. If 0.252 moles of copper were produced, how many grams of magnesium were consumed in the reaction?
7. Using the following chemical reaction, to determine the mole to mass conversion.

BALANCE EQUATION

$$
\ldots \mathrm{Na}+\ldots \mathrm{SO}_{3} \rightarrow \ldots \mathrm{Na}_{2} \mathrm{SO}_{3}
$$

a. If 5.36 moles of sodium are consumed, how many grams of sulfur trioxide gas were consumed in the reaction?

Mass (g) to Mass (g) (QUESTIONS 8-10)

8. EXAMPLE

Some cars can use butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ as fuel:

$$
\mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

How many grams of CO_{2} are produced from the combustion of 100. grams of butane?

9. Using the following chemical reaction, to determine the mass to mass conversion.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

How many grams of O_{2} will be formed from 3.76 grams of KClO_{3} ?

$3.76 \mathrm{~g} \mathrm{KClO}_{3}$	$1 \mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{O}_{2}$	$\ldots \mathrm{~g} \mathrm{O}_{2}$
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{O}_{2}$

Molar Mass of $\mathrm{KClO}_{3}=122.55 \mathrm{~g} / \mathbf{m o l}$
10. Using the following chemical reaction, to determine the mass to mass conversion.

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 42.7 grams of Fe is reacted?

42.7 g Fe	\ldots	mol Fe	$\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$
	\ldots	$\mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$	
	g Fe	$\ldots \mathrm{mol} \mathrm{Fe}$	$\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

